ДЕПАРТАМЕНТ ОБРАЗОВАНИЯ АДМИНИСТРАЦИИ ГОРОДА ЕКАТЕРИНБУРГА МУНИЦИПАШЛЬНОЕ АВТОНОМНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ СРЕДНЯЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА № 69

620014, г.Екатеринбург, ул.Сакко и Ванцетти, 36 Teл.371-67-64, e-mail: soch69@eduekb.ru

ПРИНЯТО

Педагогическим советом

протокол № 10 от 25 августа 2025 года

УТВЕРЖДЕНО

Приказом № 72-о от 26 августа 2025 года

Директора МАОУ СОШ № 69

Т.В.Субботина

Дополнительная общеобразовательная общеразвивающая программа технической направленности

«Мобильная робототехника»

Возраст обучающихся: 9-12 лет

Срок реализации: 1 год

Составитель:

Бердюгина Полина Алексеевна,

педагог дополнительного образования МАОУ СОШ № 69

СОДЕРЖАНИЕ

1.	Комплекс основных характеристик программы	
1.1.	Пояснительная записка	3
1.2.	Цели и задачи Программы	5
1.3.	Содержание Программы	
	1.3.1. Учебный план	6
	1.3.2. Содержание учебного плана	6
1.4.	Планируемые результаты	9
2.	Комплекс организационно-педагогических условий	
	2.1. Календарный учебный график	. 11
	2.2. Условия реализации Программы	. 19
	2.3. Формы аттестации и оценочные материалы	. 21
	2.4. Методические материалы	. 23
3.	Список литературы	. 25

КОМПЛЕКС ОСНОВНЫХ ХАРАКТЕРИСТИК ПРОГРАММЫ

1.1. Пояснительная записка

Дополнительная общеобразовательная общеразвивающая программа «Мобильная робототехника» (далее - Программа) составлена в соответствии со следующими нормативными документами.

- Федеральный закон Российской Федерации от 29 декабря 2012 г. № 273-ФЗ "Об образовании в Российской Федерации" (в актуальной редакции).
- Распоряжение Правительства Российской Федерации от 04 сентября 2014 года № 1726-р «Об утверждении Концепции развития дополнительного образования детей».
- Приказ Министерства просвещения РФ от 09.11.2018 № 196 "Об утверждении Порядка организации и осуществления образовательной деятельности по дополнительным общеобразовательным программам".
- Постановление Главного государственного санитарного врача Российской Федерации от 28.09.2020 №28 «Об утверждении СанПин 2.4.3648-20 «Санитарно-эпидемиологические требования к организациям воспитания и обучения, отдыха и оздоровления детей и молодежи».

Направленность Программы - техническая. Уровень реализации - базовый.

Настоящая Программа ориентирована на проектирование и конструирование всевозможных интеллектуальных механизмов - роботов, имеющих модульную структуру и обладающих мощными микропроцессорами.

Занятия по Программе - это один из интереснейших способов изучения компьютерных технологий и программирования. Во время занятий обучающиеся научатся проектировать, создавать и программировать роботов. Командная работа над практическими заданиями способствует глубокому изучению составляющих современных роботов, а визуальная программная среда позволит легко и эффективно изучить алгоритмизацию и программирование.

Актуальность Программы обосновывается тем, что в настоящее время человечество остро нуждается в роботах, которые могут без помощи оператора тушить пожары, самостоятельно передвигаться по заранее неизвестной, реальной пересеченной местности, выполнять спасательные операции во время стихийных бедствий, аварий атомных электростанций, в борьбе с терроризмом. Появилась необходимость в мобильных роботах, предназначенных для удовлетворения каждодневных потребностей людей. И уже сейчас на современном производстве и в промышленности востребованы специалисты обладающие знаниями в этой области. Поэтому сегодня робототехника приобретает все большую значимость в жизни современной человека и занимает одно из первых мест, как в школьном, так и в университетском образовании.

В этой связи робототехнику можно рассматривать как новый образовательный ресурс, который находится на стыке перспективных областей знания: механика, электроника,

автоматика, конструирование, программирование и технический дизайн.

Новизна Программы состоит в том, что ее ведение в общеобразовательной школе неизбежно изменит картину восприятия обучающимися технических дисциплин, переводя их в разряд прикладных. Применение детьми на практике теоретических знаний, полученных на математике, приведет к более глубокому пониманию основ, закрепляет полученные навыки, формируя образование в его наилучшем смысле. С другой стороны, игры в роботы, в которых заблаговременно узнаются основные принципы расчетов простейших механических систем и алгоритмы их автоматического функционирования под управлением программируемых контроллеров, послужат хорошей почвой для последующего освоения теоретического материала в учебной деятельности.

В процессе освоения содержания Программы обучающиеся научатся объединять реальный мир с виртуальным. В процессе конструирования и программирования - получат дополнительное образование в области физики, механики, электроники и информатики. Они также получат возможность прикоснуться к неизведанному миру роботов, что для современного ребенка является мощным стимулом к познанию нового, преодолению инстинкта потребителя и формированию стремления к самостоятельному созиданию. При этом при внешней привлекательности поведения, роботы могут быть содержательно наполнены интересными и непростыми задачами, которые неизбежно встанут перед юными инженерами. Их решение сможет привести к развитию уверенности в своих силах и к расширению горизонтов познания. В этом заключается педагогическая целесообразность Программы.

Принципы решения актуальных задач человечества с помощью роботов, усвоенные в школьном возрасте (пусть и в игровой форме), ко времени окончания вуза и начала работы по специальности отзовутся в принципиально новом подходе к реальным задачам.

Наряду с этим настоящая Программа - это один из интереснейших способов изучения компьютерных технологий и программирования. Во время занятий обучающиеся научатся проектировать, создавать и программировать роботов. Командная работа над практическими заданиями способствует глубокому изучению составляющих современных роботов, а визуальная программная среда позволит легко и эффективно изучить алгоритмизацию и программирование. Дополнительным ее преимуществом является создание команды единомышленников и ее участие в олимпиадах по робототехнике, что значительно усиливает мотивацию обучающихся к получению знаний.

Отличительная особенность Программы заключается в том, что в процессе освоения ее содержания у обучающихся формируются представления о закономерностях протекания информационных процессов в системах различной природы, а также о методах и средствах их автоматизации. В этой связи отбор содержания занятий по Программе осуществлен с учетом фундаментальных основ информатики.

4

Адресат Программы — обучающиеся в возрасте от 9 до 12 лет, которые интересуются техническим творчеством. **Срок реализации** Программы - 1 год.

Периодичность и продолжительность занятий по Программе - 1 занятие в неделю продолжительностью 1,5 часа. Общее количество часов по Программе - 51 час в год. Практические занятия составляют большую часть программы. В группу принимается не более 10 человек. Обучающиеся по Программе не должны иметь медицинские противопоказания к занятиям робототехникой.

Форма обучения по Программе - очная.

1.2. Цели и задачи Программы

Основная цель Программы - развитие алгоритмического мышления, творческих способностей обучающихся в процессе конструирования и проектирования, формирование информационной культуры.

На реализацию поставленной цели направлены следующие задачи.

- Дать первоначальные знания по устройству робототехнических устройств.
- Обучить основным приемам сборки и программирования робототехнических средств.
- Сформировать общенаучные и технологические навыки конструирования и проектирования.
- Познакомить с правилами безопасной работы с инструментами необходимыми при конструировании робототехнических средств.
- Формировать творческое отношение по выполняемой работе; навыки работы в коллективе.
- Развивать творческую инициативу и самостоятельность; психофизиологические качества обучающихся: память, внимание, способность логически мыслить, анализировать, концентрировать внимание на главном.

1.3. Содержание Программы

1.3.1. Учебный план

№		Ко	личество ча	асов	Формы
п/п	Название раздела	Всего	Теория	Практика	аттестации/ контроля
1.	Введение в программу	1,5	1,5	-	Опрос
2.	Основы конструирования	1,5	0,5	1	Опрос
3.	Альтернативные источники энергии	3	0,5	2,5	Творческое задание
4.	Первое знакомство с программой LEGO Mindstorms	3	1,5	1,5	Творческое задание
5.	Программирование серводвигателя	3	0,5	2,5	Творческая работа
6.	Создание и программирование роботов с одним датчиком	3	0,5	2,5	Творческое задание
7.	Создание и программирование роботов с несколькими датчиками	9	0,5	8,5	Творческая работа
8.	Рука для робота	6	0,5	5,5	Творческие проект
9.	Имитируем способы передвижения живых организмов	6	1	5	Творческая работа
10.	Знакомство с базовым и ресурсным робототехническими наборами	3	0,5	2,5	Творческое задание
11.	Изучение аппаратно-вычислительной платформы ARDUINO	4,5	0,5	4	Творческий отчет
12.	Программирование мобильного робота POP-BOT	4,5	0,5	4	Творческая работа
13.	Соревнования с использованием тренировочных полей	3	-	3	Итоговый протокол
	итого:	51	8,5	42,5	

1.3.2. Содержание учебного плана Раздел 1. Введение в программу (1,5 часа)

Теория. Введение. Техника безопасности. Роботы вокруг нас.

Практика. Знакомство с оборудованием конструктора LEGO Mindstorms: электронные компоненты, соединительные и конструкционные элементы.

Раздел 2. Основы конструирования (1,5 часов)

Теория. Прочность конструкции и способы повышения прочности.

Практика. Блок и рычаг. Ременная передача. Шасси для мобильного робота. Устойчивость модели.

Раздел 3. Альтернативные источники энергии (3 часа)

Теория. Преобразование энергии ветра и воды.

Практика. Применение силы ветра для движения модели.

Раздел 4. Первое знакомство с программой LEGO Mindstorms Ed^ation (3 часа)

Теория. Подключение EV3. Команды, палитры инструментов.

Практика. Использование дисплея EV3. Интерфейс модуля EV3. Запуск и сохранение программы.

Раздел 5. Программирование серводвигателя (3 часа)

Теория. Устройство и применение. Зубчатые передачи. Блок Движение.

Практика. Разработка программ «Движение вперед-назад», «Робот-волчок», «Движение с ускорением», «Изучаем тормоза». Плавный поворот, движение по кривой. Разработка программ «Восьмерка», «Змейка», «Поворот на месте», «Спираль». Блок Цикл. Первая подпрограмма. Разработка программ «Парковка», «Выход из лабиринта».

Раздел 6. Создание и программирование роботов с одним датчиком (3 часа)

Теория. Управление роботом с помощью микрофона. Блок Переключатель. Датчик касания. Обнаружение препятствия с помощью датчика касания. Датчик освещенности. Ограничение движения линией. Движение вдоль линии с применением датчика освещенности. Ультразвуковой датчик. Определение роботом расстояния до препятствия. Практика. Изготовление роботов для состязаний «Движение по линии», «Лестница» с использованием одного датчика. Итоговое занятие в форме состязания роботов.

Раздел 7. Создание и программирование роботов с несколькими датчиками (9 часов)

Теория. Движение по линии с применением двух датчиков. Робот, исследующий местность. Конструкция с применением ультразвукового датчика и датчика освещенности. «Горячо - Холодно». Обнаружение источников тепла.

Практика. Создание робота с использованием датчика температуры и датчика света. Создание робота с применением датчиков магнитного поля и освещенности. Создание робота с применением датчика магнитного поля и ультразвукового датчика.

Раздел 8. Рука для робота (6 часов)

Теория. Технология создания роботов.

Практика. Создание «Робота-художника», «Автопогрузчика», «Руки для кубиков», «Робота-манипулятора», «Робота-сортировщика».

Раздел 9. Имитируем способы передвижения живых организмов (6 часов)

Теория. Технология имитации способов передвижения живых организмов.

Практика. Создание роботов: «Робот-гусеница», «Робот-собака», «Сороконожка», «Робот-рыба», «Робот-гуманоид».

Раздел 10. Знакомство с базовым и ресурсным робототехническими наборами (3 часа)

Теория. Использование робототехнических модулей в реализации творческих инженерных проектов.

Практика. Создание робототехнических комплексов.

Раздел 11. Изучение аппаратно-вычислительной платформы ARDUINO (4,5 часа)

Теория. Биты и байты. Базовая структура программы. Последовательное выполнение программы. Прерывание выполнения программы.

Практика. Структура программы Arduino. Первая программа с Arduino. Команды Arduino и их применение. Комментарии в исходном тексте. Фигурные скобки. Точка с запятой. Типы данных и переменные. Имя переменной. Локальные и глобальные переменные. Различные типы данных. Операторы. Директива #define. Управляющие конструкции. Циклы. Функции и подпрограммы. Функции преобразования типа. Математические функции. Последовательный ввод/вывод. Как функционирует последовательный интерфейс? Программная эмуляция. Конфигурация входа/выхода и установка порта. Аналоговый ввод данных и АЦП. Аналоговый выход ШИМ. Некоторые специальные функции. Установка паузы с помощью delay. Функции случайных чисел.

Регулятор уровня яркости светодиода с транзистором. Плавное мигание. Подавление дребезга контактов кнопок. Задержка включения. Задержка выключения. Светодиоды и Arduino. Подключение больших нагрузок. ЦАП на основе ШИМ-порта. С музыкой все веселей. Свет свечи с помощью микроконтроллера. Контроль персонала на проходной. Часы реального времени. Программа школьных часов. Управление вентилятором .

Автомат уличного освещения. Сигнализация. Кодовый замок. Измеритель емкости с автоматическим выбором диапазона. Профессиональное считывание сопротивления потенциометра. Сенсорный датчик. Конечный автомат.

Раздел 12. Программирование мобильного робота РОР-ВОТ (4,5 часа)

Теория. Базовые перемещения РОР-ВОТ. Бампер робота РОР-ВОТ.

Практика. Простейшее программирование ЖКИ SLCD16x2. Управление ЖКИ SLCD16x2 с помощью команд. Обнаружение белых и черных участков поверхности. Движение POP-ВОТ в пределах границы. Движение POP-ВОТ между двумя параллельными линиями. Движение робота вдоль черной линии. Обнаружение пересечения линий. Движение POP-ВОТ вдоль линий, пересекающихся под углом. Движение по участку с большим количеством пересекающихся линий. POP-ВОТ обнаружение края стола. Чтение данных с модуля GP2D120. Бесконтактная система предотвращения столкновений. Управление сервомоторами. Поиск объектов.

Раздел 13. Соревнования с использованием тренировочных полей (3 часа)

Практика. Проведение соревнований с использованием тренировочных полей.

1.4. Планируемые результаты

Планируемый результат освоения содержания Программы - знания, умения, навыки не только личностного, так и метапредметного характера.

- Обучающиеся будут знать:
 - теоретические основы создания робототехнических устройств;
 - элементную базу при помощи которой собирается устройство;
- порядок взаимодействия механических узлов робота с электронными и оптическими устройствами;
 - порядок создания алгоритма программы действия робототехнических средств;
 - конструктивные особенности различных моделей, сооружений и механизмов;
- правила техники безопасности при работе с инструментом и электрическими приборами;
- виды подвижных и неподвижных соединений в конструкторе; основные приемы конструирования роботов.
 - Обучающиеся будут уметь:
- проводить сборку робототехнических средств с применением LEGO конструкторов и конструкторов Arduino;
- создавать программы для робототехнических средств при помощи специализированных визуальных конструкторов;
- самостоятельно планировать пути достижения целей; соотносить свои действия с планируемыми результатами, осуществлять контроль своей деятельности, определять способы действий в рамках предложенных условий, корректировать свои действия в

соответствии с изменяющейся ситуацией; оценивать правильность выполнения учебной задачи;

Наряду с этим освоение содержания Программы позволит обучающимся:

- овладеть основами самоконтроля, самооценки, принятия решений и осуществления осознанного выбора в деятельности; основными универсальными умениями информационного характера: постановка и формулирование проблемы; поиск и выделение необходимой информации, применение методов информационного поиска; структурирование и визуализация информации; выбор наиболее эффективных способов решения задач в зависимости от конкретных условий; самостоятельное создание алгоритмов деятельности при решении проблем творческого и поискового характера;
- самостоятельно решать технические задачи в процессе конструирования роботов (планирование предстоящих действий, самоконтроль, применять полученные знания, приемы и опыт конструирования с использованием специальных элементов, и других объектов и т.д.);
- создавать реально действующие модели роботов при помощи специальных элементов по разработанной схеме, по собственному замыслу; демонстрировать технические возможности роботов.

2. КОМПЛЕКС ОРГАНИЗАЦИОННОЕ-ПЕДАГОГИЧЕСКИХ УСЛОВИЙ

2.1. Календарный учебный график

	л 1. Введе Сентябрь	ние в программу (1,5 часа) Введение. Техника безопасности. Роботы вокруг нас. Знакомство с оборудованием конструктора LEGO	Беседа с элементами демонстрации	часов 1,5	контроля Наблюдение
		Введение. Техника безопасности. Роботы вокруг нас. Знакомство с оборудованием	элементами	1,5	Наблюдение
1. C	Сентябрь	безопасности. Роботы вокруг нас. Знакомство с оборудованием	элементами	1,5	Наблюдение
		вокруг нас. Знакомство с оборудованием			
		оборудованием	демонстрации		
		10			
		конструктора LEGO			
		Mindstorms: электронные			
		компоненты,			
		соединительные и			
		конструкционные			
		элементы			
Раздел	л 2. Основ	вы конструирования (1,5 час	a)		
2 0	Сентябрь	Прочность конструкции и	Практическая	1,5	Наблюдение
		способы повышения	работа		
		прочности. Блок и рычаг.			
		Ременная передача. Шасси			
		для мобильного робота.			
		Устойчивость модели			
Раздел	л 3. Альте	рнативные источники энерг	ии (3 часа)		
3. C	Сентябрь	Преобразование энергии	Беседа с	1,5	Опрос
		ветра и воды	элементами		
			демонстрации		
4. C	Сентябрь	Применение силы ветра	Практическая	1,5	Наблюдение
		для движения модели	работа		
Раздел	л 4. Перво	е знакомство с программой	LEGO Mindstorm	s Education (3	часа)
5. C	Октябрь	Подключение EV3.	Беседа с	1,5	Наблюдение
		Команды, палитры	элементами		
		инструментов	демонстрации		
6. C	Октябрь	Использование дисплея	Практическая	1,5	Творческое
		EV3. Интерфейс модуля	работа		задание
		EV3. Запуск и сохранение	1		

		программы			
Разд	цел 5. Прогр	раммирование серводвигател	ія (3 часа)		L
7.	Октябрь	Устройство и применение.	Практическая	1,5	Творческое
		Зубчатые передачи. Блок	работа		задание
		Движение.			
		Разработка программ			
		«Движение вперед-назад»,			
		«Робот-волчок»,			
		«Движение с ускорением»			
8.	Октябрь	Разработка программ	Практическая	1,5	Творческое
		«Изучаем тормоза».	работа		задание
		Плавный поворот,			
		движение по кривой.			
		Разработка программ			
		«Восьмерка», «Змейка»,			
		«Поворот на месте»,			
		«Спираль». Блок Цикл.			
		Первая подпрограмма.			
		Разработка программ			
		«Парковка», «Выход из			
		лабиринта»			
Разд	цел 6. Созда	ние и программирование роб	ботов с одним дат	чиком (3 часа)
9.	Ноябрь	Управление роботом с	Практическая	1,5	Наблюдение
		помощью микрофона. Блок	работа		
		Переключатель. Датчик			
		касания. Обнаружение			
		препятствия с помощью			
		датчика касания. Датчик			
		освещенности.			
		Ограничение движения			
		линией. Движение вдоль			
		линии с применением			
		датчика освещенности.			
		Ультразвуковой датчик.			
		Определение роботом			
		расстояния до	2		

		препятствия			
10.	Ноябрь	Изготовление роботов для	Практическая	1,5	Творческое
		состязаний «Движение по	работа		задание
		линии». Изготовление			
		роботов для состязаний			
		«Лестница» с			
		использованием одного			
		датчика			
Разд	цел 7. Созда	ние и программирование роб	ботов с нескольки	іми датчикам	ии (9 часов)
11.	Ноябрь	Движение по линии с	Практическая	1,5	Наблюдение
		применением двух	работа		
		датчиков. Робот,			
		исследующий местность			
12.	Ноябрь	Конструкция с	Практическая	1,5	Творческое
		применением	работа		задание
		ультразвукового датчика и			
		датчика освещенности.			
		«Горячо-Холодно».			
		Обнаружение источников			
		тепла			
13.	Декабрь	Создание робота с	Практическая	1,5	Творческое
		использованием датчика	работа		задание
		температуры и датчика			
		света			
14.	Декабрь	Создание робота с	Практическая	1,5	Творческое
		применением датчиков	работа		задание
		магнитного поля и			
		освещенности			
15	Декабрь	Создание робота с	Практическая	1,5	Творческое
		применением датчика	работа		задание
		магнитного поля и			
		ультразвукового датчика			
16	Декабрь	Создание робота с	Практическая	1,5	Творческое
		применением датчика	работа		задание
		магнитного поля и			
		ультразвукового датчика	3		
			3		1

Разд	цел 8. Рука	для робота (6 часов)			
17	Январь	Технология создания	Беседа с	1,5	Наблюдение
		Роботов. Создание	элементами		
		«Робота-художника»	демонстрации		
18	Январь	Создание «Робота-	Проктиноскоя	1,5	Трориоогий
		автопогрузчика». Создание	Практическая		Творческий
		«Руки для кубиков»	работа		проект
19	Январь	Создание «Робота-	Практическая	1,5	Творческий
		манипулятора»	работа		проект
20	Февраль	Создание «Робота-	Практическая	1,5	Творческий
		сортировщика»	работа		проект
Разд	цел 9. Имит	ируем способы передвижения	я живых организ	мов (6 часов)	
21	Февраль	Технология имитации	Беседа с	1,5	Наблюдение
		Способов передвижения живых организмов.			
		Создание роботов: «Робот-	элементами		
		гусеница»	демонстрации		
22	Февраль	Создание роботов: «Робот-	Практическая	1,5	Творческая
		собака», «Сороконожка»	работа		работа
23	Февраль	Создание роботов: «Робот-	Практическая	1,5	Творческая
		рыба», «Робот-гуманоид»	работа		работа
24	Март	Создание роботов по	Практическая	1,5	Творческая
		индивидуальному проекту	работа		работа
Разд	цел 10. Знак	сомство с базовым и ресурсны	ым робототехниче	ескими набора	ами (3 часа)
25	Март	Использование		1,5	
		робототехнических	Променум омо д		Творческая
		модулей в реализации	Практическая работа		работа
		творческих инженерных	раоота		раоота
		проектов.			
26	Март	Создание	Прокультория	1,5	Творческая
		робототехнических	Практическая		1
		комплексов.	работа		работа
Разд	цел 11. Изуч	нение аппаратно-вычислител	ьной платформы	ARDUINO (4	,5 часа)
27	Март	Биты и байты. Базовая		1,5	
		структура программы.	Практическая		Творческая
		Последовательное	работа		работа
		выполнение программы.	4		
	ı	1			L

		Прерывание выполнения			
		программы. Структура			
		программы Arduino. Первая			
		программа с Arduino.			
		Команды Arduino и их			
		применение. Комментарии			
		в исходном тексте.			
		Фигурные скобки. Точка с			
		запятой. Типы данных и			
		переменные. Имя			
		переменной			
28	Апрель	Локальные и глобальные		1,5	
		переменные. Различные			
		типы данных. Операторы.			
		Директива #define.			
		Управляющие			
		конструкции. Циклы.			
		Функции и			
		подпрограммы. Функции			
		преобразования типа.			
		Математические функции.			
		Последовательный			
		ввод/вывод. Как	Практическая		Творческая
		функционирует	работа		работа
		последовательный	раоота		раоота
		интерфейс. Программная			
		эмуляция. Конфигурация			
		входа/выхода и установка			
		порта. Аналоговый ввод			
		данных и АЦП.			
		Аналоговый выход ШИМ.			
		Некоторые специальные			
		функции. Установка			
		паузы с помощью delay.			
		Функции случайных чисел			
29	Апрель	Регулятор уровня яркости	Практическая 5	1,5	Творческая

		светодиода с	работа		работа
		транзистором. Плавное			
		мигание. Подавление			
		дребезга контактов			
		кнопок. Задержка			
		включения. Задержка			
		выключения. Светодиоды			
		и Arduino. Подключение			
		больших нагрузок. ЦАП			
		на основе ШИМ-порта. С			
		музыкой все веселей. Свет			
		свечи с помощью			
		микроконтроллера.			
		Контроль персонала на			
		проходной. Часы			
		реального времени.			
		Программа школьных			
		часов. Управление			
		вентилятором. Автомат			
		уличного освещения.			
		Сигнализация. Кодовый			
		замок. Измеритель			
		емкости с автоматическим			
		выбором диапазона.			
		Профессиональное			
		считывание			
		сопротивления			
		потенциометра.			
		Сенсорный датчик.			
		Конечный автомат.			
Разд	(ел 1 <mark>2. Пр</mark> ог	раммирование мобильного ј	робота РОР-ВОТ	(4,5 часа)	
	Апрель	Базовые перемещения РОР-		1,5	
		ВОТ. Бампер робота РОР-	Практическая		Творческая
		ВОТ. Простейшее	работа		работа
		программирование ЖКИ	F 22.5.2.		F 22.2.
		SLCD16x2	6		

Апрель	Управление ЖКИ		1,5	
	SLCD16x2 с помощью			
	команд. Обнаружение			
	белых и черных участков			
	поверхности. Движение			
	РОР- ВОТ в пределах	Променяния		Тропусомоя
	границы. Движение РОР-	Практическая		Творческая
	ВОТ между двумя	работа		работа
	параллельными линиями.			
	Движение робота вдоль			
	черной линии.			
	Обнаружение пересечения			
	линий			
Май	Движение РОР- ВОТ		1,5	
	вдоль линий,			
	пересекающихся под			
	углом. Движение по			
	участку с большим			
	количеством			
	пересекающихся линий.	Практическая		Творческая
	РОР-ВОТ обнаружение	работа		работа
	края стола. Чтение данных	раоота		раоота
	с модуля GP2D120.			
	Бесконтактная система			
	предотвращения			
	столкновений. Управление			
	сервомоторами. Поиск			
	объектов.			
Раздел 13. Сор	евнования с использованием	тренировочных і	полей (3 часа)	
Май	Проведение соревнований с		1,5	Итоговый
	использованием	Соревнование		
	тренировочных полей			протокол
Май	Проведение соревнований с		1,5	Итоговый
	использованием	Соревнование		
	тренировочных полей.			протокол
'	1	ИТОГО:	51 час	
<u> </u>	I			

2.2. Условия реализации Программы

Кадровые ресурсы. Программу реализует педагогический работник, имеющий среднее профессиональное или высшее профессиональное образование, соответствующее профилю настоящей дополнительной общеобразовательной общеразвивающей программы.

Материально-техническая база

- Компьютерный класс (12 компьютеров) на момент программирования робототехнических средств, программирования контроллеров конструкторов, настройки самих конструкторов, отладки программ, проверка совместной работоспособности программного продукта и модулей конструкторов.
- Базовый робототехнический набор 4 шт.; для изучения базовых основ робототехники, основ программирования роботов и робототехнических устройств на базе программно-аппаратного комплекса совместимого с программируемым контроллером Arduino.
- Ресурсный робототехнический набор 4 шт.; для изучения основ электроники и микропроцессорной техники, основ программирования контроллеров на базе программируемого контроллера Iskra Neo совместимого с контроллером Arduino.
- Комплект полей с соревновательными элементами 8 шт., в составе которого:
 - пластиковые элементы, представляющие собой плоскую поверхность со специальными замками для соединения их между собой, для сбора плоской и ровной поверхности 30 шт.;
 - пластиковые элементы, предназначенные для сбора прямых бортов 20 шт.;
 - пластиковые элементы, предназначенные для сбора угловых бортов 4 шт.
- Комплект полей для соревнований проводимых РАОР 1 шт., в том числе:
 - поле «Тренировочное. Траектория» 1 шт.;
 - поле «Тренировочное. Тестовое» 1 шт.;
 - поле «Сумо-Кегельринг» 1 шт.;
 - поле «Тренировочное. VEX IQ» 1 шт.;
 - поле «Траектория. Алгоритм. Международные состязания роботов» 1 шт.;
 - поле «JuniorSkills. Мобильная робототехника 10+» 1 шт.;
 - поле «Счетчик-траектория. РобоКарусель» 1 шт.
- LEGO Mindstorms EV3 (Полный комплект для класса)
 - базовый набор Lego Mindstorms EV3, 1 на парту (2 учеников) 4 шт.;
 - зарядное устройство, по 1 на парту (2 учеников) 4 шт.;
 - ресурсный набор Lego Mindstorms EV3, по 1 на парту (2 учеников) 4 шт.;

- дополнительный комплект датчиков к базовому набору EV3 по 1 на парту (2 учеников) 4 шт.;
- поля для соревнования роботов LEGO MINDSTORMS EV3 по 1 на группу (4 учеников) 2 шт.;
- дополнительный набор «Космические проекты» по 1 на группу (4 учеников).
- Дополнительно: датчик света EV3 4 шт.; аккумуляторная батарея EV3- 4 шт.; набор Lego Education WRO Brick Set (для полей и соревнований) 4 шт.

Учебно-методическое и информационное обеспечение

- Методические рекомендации в 2-х частях 4 шт.; содержат руководства по изучению основ программирования и сборке различных схем и моделей базового и ресурсного наборов. Диск с программными материалами и дополнительными заданиями 1 шт.
- Программное обеспечение и учебные материалы: программное обеспечение; комплект заданий "Инженерные проекты", комплект заданий "Космические проекты", комплект заданий "Физические эксперименты".

2.3. Формы аттестации и оценочные материалы

Аттестация обучающихся, занимающихся по Программе, осуществляется в таких формах, как: обсуждение, коллективный анализ, групповая оценка, соревнование, творческая работа, проект, конкурс, конференция, олимпиада.

С целью выявления соответствия уровня полученных обучающимися знаний, умений и навыков планируемым результатам осуществляются текущий и итоговый контроль. Текущий контроль проводится по итогам изучения содержания каждого раздела Программы. Его формы - творческие задания, олимпиады, проекты, соревнования, выставки, научно-практические конференции. Итоговый контроль проводится по окончании изучения Программы в следующих формах: коллективное обсуждение, групповой и индивидуальный анализ, коллективная работа, творческий отчет.

Основным средством контроля является: педагогическое наблюдение, которое проводится на основании критериев, описывающих отслеживаемые результаты. Выделяют три основных типа наблюдения.

1. Наблюдение в естественных условиях. Организация такого наблюдения предполагает проведение исследования таким образом, чтобы поведение объекта исследования не нарушалось. Обычно оно проводится в среде, привычной для испытуемого, путем подробного и объективного описания происходящего прямо на

занятии в учреждении (текущий контроль).

- 2. Наблюдение в контролируемых условиях. Оно подразумевает определенный контроль за независимой переменной, даже если эта переменная не меняется экспериментатором. Данное наблюдение имеет описательные цели и допускает использование контрольных групп. Проводится такое наблюдение, как правило при проведении выставок, олимпиад, соревнований.
- 3. Косвенные методы наблюдения опросник. Этот тип наблюдения проводится по окончании освоения содержания Программы (итоговый контроль).

Наблюдение ведется за мотивационной сферой обучающегося. Результаты его заносятся в дневник наблюдения (разработан на основе материалов О.С. Гребенюка).

Признак мотивационной сферы	Характеристики признака	Результат наблюдения
Характер деятельности в процессе выполнения практической работы	пассивная - активная; недобросовестное - добросовестное; быстрое - длительное; легкое - напряженное; внимательное - невнимательное; другие проявления	
Стремление к выполнению заданий необязательных, неоцениваемых	ведение записей; чтение учебной литературы; выдвижениегипотез; обращение с вопросами; стремление узнать дополнительные способы выполнения задания; другие проявления	
Характер умственной деятельности, наиболее привлекающий обучающегося	самостоятельное решение проблем; копирование действий педагога; склонность к репродуктивным или продуктивным способам деятельности; другие проявления	

Предпочтительная	привлекают теоретические обоснования	
избирательность отдельных	работы или практическая часть; стремление	
этапов деятельности	участвовать в планировании работы;	
	участие в коллективном обсуждении	
	итогов, формулировании выводов и	
	обобщений;	
Отношение к выполнению	выполняет требования полностью или	
задания	частично; старательно или небрежно;	
	внимательно или с ошибками;	
	участвует или не участвует в групповых	
	формах работы; стремится помогать	
	товарищам;	
Увлеченность, эмоциональный	•	
подъем на занятии	Стремление к самостоятельному поиску	
	решений;	
	Хорошее/плохое настроение;	
	Стремление делиться результатами своей	
	деятельности	
Отношение к окончанию	рад - не рад окончанию; продолжает	
занятий	выполнять задание,	
	не хочет уходить;	
	другие проявления	
Отношение к помощи	THINNING TO THE THINNING TO	
педагога или товарищей	принимает - не принимает;	
	благодарен - не благодарен;	
Темп вхождения в	другие проявления	
	быстро - долго; принимает - не принимает	
деятельность	деятельность; ставит - не ставит цели;	
	другие проявления	
Качество знаний	объем, полнота, фактическая точность;	
	прочность знаний; успешность выполнения	
	заданий;	
	быстрота актуализации нужных знаний;	
	другие проявления	
	_	

реализации Программы: выставки, олимпиады, соревнования, фестивали, научно-практические конференции различных уровней.

2.4. Методические материалы

Занятия по Программе проводятся с использованием образовательного робототехнического модуля «Базовый уровень», в состав которого входят:

- *Базовый* робототехнический набор для изучения базовых основ робототехники, основ программирования роботов и робототехнических устройств на базе программно-аппаратного комплекса совместимого с программируемым контроллером Arduino.
- *Ресурсный* робототехнический набор для изучения основ электроники и микропроцессорной техники, основ программирования контроллеров на базе программируемого контроллера Iskra Neo совместимого с контроллером Arduino.

В распоряжении обучающихся будут предоставлены Лего-конструкторы и конструкторы на базе ARDUINO, оснащенные специальным микропроцессором, позволяющим создавать программируемые модели роботов. С его помощью обучаемый может запрограммировать робота на выполнение определенных функций. Простота в построении модели в сочетании с большими конструктивными возможностями конструктора позволяют детям в конце занятия увидеть сделанную своими руками модель, которая выполняет поставленную ими же самими задачу. При построении модели затрагивается множество проблем из разных областей знания - от теории механики до психологии.

Формы проведения **занятий** по Программе**:** беседа; демонстрация; практическая работа; творческая работа; проектная деятельность, работа в парах и в группах, соревнование, участие в олимпиадах, фестивалях.

3. СПИСОК ЛИТЕРАТУРЫ

Литература для педагога:

- 1. ЛЕГО-лаборатория (Control Lab):СпраВ04Ное пособие, М.: ИНТ, 1998, 150 стр.
- 2. ЛЕГО-лаборатория (Control Lab). Эксперименты с моделью вентилятора: Учебнометодическое пособие, М.: ИНТ, 1998, 46 с.
- 3. Ньютон С. Брага. Создание роботов в домашних условиях. М.: NT Press, 2007, 345 стр.;
- 4. Применение учебного оборудования. Видеоматериалы. М.: ПКГ «РОС», 2012;
- 5. Рыкова Е. А. LEGO-Лаборатория (LEGO Control Lab). Учебно-методическое пособие. СПб, 2001, 59 стр.

Литература для обучающихся

- 1. Соммер У. Программирование микроконтроллерных плат Arduino/Freeduino. СПБ.: БХВ-Петербург, 2012. 256 с.
- 2. Петин В.А. Проекты с использованием контроллера Arduino. СПБ.: БХВ-Петербург, 2014. 401 с.

Интернет-ресурсы

www.school.edu.ru/int

http://www.prorobot.ru

http://www.nnxt.blogspot.ru

http://www.ielf.ucoz.ru

http://www.fiolet-korova.ru

http://www.mindstorms.ru

http://www.lego56.ru

http://www.robot-develop.org

http://www.lego.detmir.ru

ДОКУМЕНТ ПОДПИСАН ЭЛЕКТРОННОЙ ПОДПИСЬЮ

СВЕДЕНИЯ О СЕРТИФИКАТЕ ЭП

Сертификат 520251343390373548250310750880108285629354443717

Владелец Субботина Татьяна Викторовна Действителен С 05.05.2025 по 05.05.2026